Abstract

The plant hormone gibberellin (GA) is required at different stages of legume nodule development, with its spatiotemporal distribution tightly regulated. Transcriptomic and bioinformatic analyses established that several key GA biosynthesis and catabolism enzyme encoding genes are critical to soybean (Glycine max) nodule formation. We examined the expression of several GA oxidase genes and used a Förster resonance energy transfer-based GA biosensor to determine the bioactive GA content of roots inoculated with DsRed-labelled Bradyrhizobium diazoefficiens. We manipulated the level of GA by genetically disrupting the expression of GA oxidase genes. Moreover, exogenous treatment of soybean roots with GA3 induced the expression of key nodulation genes and altered infection thread and nodule phenotypes. GmGA20ox1a, GmGA3ox1a, and GmGA2ox1a are upregulated in soybean roots inoculated with compatible B. diazoefficiens. GmGA20ox1a expression is predominately localized to the transient meristem of soybean nodules and coincides with the spatiotemporal distribution of bioactive GA occurring throughout nodule organogenesis. GmGA2ox1a exhibits a nodule vasculature-specific expression pattern, whereas GmGA3ox1a can be detected throughout the nodule and root. Disruptions in the level of GA resulted in aberrant rhizobia infection and reduced nodule numbers. Collectively, our results establish a central role for GAs in root hair infection by symbiotic rhizobia and in nodule organogenesis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.