Abstract
In recent years, action recognition has become a popular and challenging task in computer vision. Nowadays, two-stream networks with appearance stream and motion stream can make judgment jointly and get excellent action classification results. But many of these networks fused the features or scores simply, and the characteristics in different streams were not utilized effectively. Meanwhile, the spatial context and temporal information were not fully utilized and processed in some networks. In this paper, a novel three-stream network spatiotemporal attention enhanced features fusion network for action recognition is proposed. Firstly, features fusion stream which includes multi-level features fusion blocks, is designed to train the two streams jointly and complement the two-stream network. Secondly, we model the channel features obtained by spatial context to enhance the ability to extract useful spatial semantic features at different levels. Thirdly, a temporal attention module which can model the temporal information makes the extracted temporal features more representative. A large number of experiments are performed on UCF101 dataset and HMDB51 dataset, which verify the effectiveness of our proposed network for action recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.