Abstract

Rapid urbanisation in the global south has often introduced substantial and rapid uncontrolled Land Use and Land Cover (LULC) changes, considerably affecting the Land Surface Temperature (LST) patterns. Understanding the relationship between LULC changes and LST is essential to mitigate such effects, considering the urban heat island (UHI). This study aims to elucidate the spatiotemporal variations and alterations of LST in urban areas compared to LULC changes. The study focused on a peripheral urban area of Phnom Penh (Cambodia) undergoing rapid urban development. Using Landsat images from 2000 to 2021, the analysis employed an exploratory time-series analysis of LST. The study revealed a noticeable variability in LST (20 to 69 °C), which was predominantly influenced by seasonal variability and LULC changes. The study also provided insights into how LST varies within different LULC at the exact spatial locations. These changes in LST did not manifest uniformly but displayed site-specific responses to LULC changes. This study accounts for changing land surfaces’ complex physical energy interaction over time. The methodology offers a replicable model for other similarly structured, rapidly urbanised regions utilising novel semi-automatic processing of LST from Landsat images, potentially inspiring future research in various urban planning and monitoring contexts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call