Abstract
Macroautophagy is a homeostatic process required to clear cellular waste. Neuronal autophagosomes form constitutively in the distal tip of the axon and are actively transported toward the soma, with cargo degradation initiated en route. Cargo turnover requires autophagosomes to fuse with lysosomes to acquire degradative enzymes; however, directly imaging these fusion events in the axon is impractical. Here we use a quantitative model, parameterized and validated using data from primary hippocampal neurons, to explore the autophagosome maturation process. We demonstrate that retrograde autophagosome motility is independent of fusion and that most autophagosomes fuse with only a few lysosomes during axonal transport. Our results indicate that breakdown of the inner autophagosomal membrane is much slower in neurons than in nonneuronal cell types, highlighting the importance of this late maturation step. Together, rigorous quantitative measurements and mathematical modeling elucidate the dynamics of autophagosome-lysosome interaction and autophagosomal maturation in the axon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.