Abstract

Background/PurposePulmonary hypoplasia (PH) is a life-threatening condition of newborns presenting with congenital diaphragmatic hernia (CDH). Sprouty-2 functions as a key regulator of fibroblast growth factor receptor (FGFR) signalling in developing foetal lungs. It has been reported that FGFR-mediated alveolarization is disrupted in nitrofen-induced PH. Sprouty-2 knockouts show severe defects in lung morphogenesis similar to nitrofen-induced PH. Upon FGFR stimulation, Sprouty-2 is tyrosine-phosphorylated, which is essential for its physiological function during foetal lung development. We hypothesized that Sprouty-2 expression and tyrosine phosphorylation are altered in nitrofen-induced PH. MethodsTime-pregnant rats received either nitrofen or vehicle on gestation day 9 (D9). Foetal lungs were dissected on D18 and D21. Pulmonary Sprouty-2 gene and protein expression levels were analyzed by qRT-PCR, Western blotting and immunohistochemical staining. ResultsRelative mRNA expression of Sprouty-2 was significantly decreased in hypoplastic lungs without CDH (0.1050±0.01 vs. 0.3125±0.01; P<.0001) and with CDH (0.1671±0.01 vs. 0.3125±0.01; P<.0001) compared to controls on D18. Protein levels of Sprouty-2 were markedly decreased in hypoplastic lungs on D18 with decreased tyrosine phosphorylation levels on D18 and D21 detected at the molecular weight of Sprouty-2 consistent with Sprouty-2 tyrosine phosphorylation. Sprouty-2 immunoreactivity was markedly decreased in hypoplastic lungs on D18 and D21. ConclusionSpatiotemporal alterations in pulmonary Sprouty-2 expression and tyrosine phosphorylation during the late stages of foetal lung development may interfere with FGFR-mediated alveolarization in nitrofen-induced PH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.