Abstract
A longstanding pursuit in information communication is to increase transmission capacity and accuracy, with multiplexing technology playing as a promising solution. To overcome the challenges of limited spatial information density and systematic complexity in acoustic communication, here real-time spatiotemporal communication is proposed and experimentally demonstrated by a single sensor based on the rotational Doppler effect. The information carried in multiplexed orbital-angular-momentum (OAM) channels is transformed into the physical quantities of the temporal harmonic waveform and simultaneously detected by a single sensor. This single-sensor configuration is independent of the channel number and encoding scheme. The parallel transmission of complicated images is demonstrated by multiplexing eight OAM channels and achieving an extremely-low bit error rate (BER)exceeding 0.02%, owing to the intrinsic discrete frequency shift of the rotational Doppler effect. The immunity to inner-mode crosstalk and robustness to noise of the simple and low-cost communication paradigm offers promising potential to promote relevant fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.