Abstract

The groove density mismatching of compression gratings, an often-neglected key issue, can induce significant spatiotemporal aberrations especially for super-intense femtosecond lasers. We mainly investigate the angular chirp and the consequent degradation of the effective focused intensity introduced by the groove density mismatching of compression gratings in ultra-intense femtosecond lasers. The results indicate that the tolerances of grating groove density mismatching will rapidly decrease with the beam aperture or spectral bandwidth increases. For our 100PW laser under construction, the grating groove density mismatching should be as small as 0.001 gr/mm if the drop of effective focused intensity has to be controlled below 15%. More importantly, new angular chirp compensation schemes are proposed for both double-grating and four-grating compressors. This work reveals the importance of groove density matching of compression gratings, and can provide helpful guidelines for the design of ultra-intense femtosecond lasers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.