Abstract

Electroencephalographic (EEG) oscillations predominantly appear with periods between 1s (1Hz) and 20ms (50Hz), and are subdivided into distinct frequency bands which appear to correspond to distinct cognitive processes. A variety of blind source separation (BSS) approaches have been developed and implemented within the past few decades, providing an improved isolation of these distinct processes. Within the present study, we demonstrate the feasibility of multi-subject BSS for deriving distinct EEG spatiospectral maps. Multi-subject spatiospectral EEG decompositions were implemented using the EEGIFT toolbox ( http://mialab.mrn.org/software/eegift/ ) with real and realistic simulated datasets (the simulation code is available at http://mialab.mrn.org/software/simeeg ). Twelve different decomposition algorithms were evaluated. Within the simulated data, WASOBI and COMBI appeared to be the best performing algorithms, as they decomposed the four sources across a range of component numbers and noise levels. RADICAL ICA, ERBM, INFOMAX ICA, ICA EBM, FAST ICA, and JADE OPAC decomposed a subset of sources within a smaller range of component numbers and noise levels. INFOMAX ICA, FAST ICA, WASOBI, and COMBI generated the largest number of stable sources within the real dataset and provided partially distinct views of underlying spatiospectral maps. We recommend the multi-subject BSS approach and the selected algorithms for further studies examining distinct spatiospectral networks within healthy and clinical populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.