Abstract

Long-term data sets are essential to understand climate-induced variability in marine ecosystems. This study provides the first comprehensive analysis of longer-term temporal and spatial variations in zooplankton abundance and copepod community structure in the northern Benguela upwelling system from 2005 to 2011. Samples were collected from the upper 200 m along a transect at 20°S perpendicular to the coast of Namibia to 70 nm offshore. Based on seasonal and interannual trends in surface temperature and salinity, three distinct time periods were discernible with stronger upwelling in spring and extensive warm-water intrusions in late summer, thus, high temperature amplitudes, in the years 2005/06 and 2010/11, and less intensive upwelling followed by weaker warm-water intrusions from 2008/09 to 2009/10. Zooplankton abundance reflected these changes with higher numbers in 2005/06 and 2010/11. In contrast, zooplankton density was lower in 2008/09 and 2009/10, when temperature gradients from spring to late summer were less pronounced. Spatially, copepod abundance tended to be highest between 30 and 60 nautical miles off the coast, coinciding with the shelf break and continental slope. The dominant larger calanoid copepods were Calanoides carinatus, Metridia lucens and Nannocalanus minor. On all three scales studied, i.e. spatially from the coast to offshore waters as well as temporally, both seasonally and interannually, maximum zooplankton abundance was not coupled to the coldest temperature regime, and hence strongest upwelling intensity. Pronounced temperature amplitudes, and therefore strong gradients within a year, were apparently important and resulted in higher zooplankton abundance.

Highlights

  • The Benguela Current upwelling region, extending along the South West African coast from 17 to 34uS, belongs to the four major eastern boundary currents in the world [1]

  • Upwelling-favourable, south-easterly trade winds are most pronounced during spring and summer (September to March) in the southern Benguela Current (SBC) system and during winter and spring (July to November) in the northern Benguela Current (NBC) region [8]

  • In contrast to the southern Benguela Current system (SBC), plankton data are still scarce for the northern Benguela Current region (NBC), especially considering long-term dynamics [15]

Read more

Summary

Introduction

The Benguela Current upwelling region, extending along the South West African coast from 17 to 34uS, belongs to the four major eastern boundary currents in the world [1]. It is one of the most productive marine ecosystems reaching an average annual primary production of about 400–900 g C m22 yr21 [2,3,4]. Upwelling-favourable, south-easterly trade winds are most pronounced during spring and summer (September to March) in the southern Benguela Current (SBC) system and during winter and spring (July to November) in the northern Benguela Current (NBC) region [8]. The central Namibian region (19–24uS) is often affected by onshore or alongshore flows of tropical waters from the North and oceanic waters from the West to Northwest [10,11,12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.