Abstract
Depending on the amount of aeolian sediment input and dune erosion, dune size and morphology change over time. Since coastal foredunes play an important role in the Dutch coastal defence, it is important to have good insight in the main factors that control these changes. In this paper the temporal variations in foredune erosion and accretion were studied in relation to proxies for aeolian transport potential and storminess using yearly elevation measurements from 1965 to 2012 for six sections of the Dutch coast. Longshore differences in the relative impacts of erosion and accretion were examined in relation to local beach width. The results show that temporal variability in foredune accretion and erosion is highest in narrow beach sections. Here, dune erosion alternates with accretion, with variability displaying strong correlations with yearly values of storminess (maximum sea levels). In wider beach sections, dune erosion is less frequent, with lower temporal variability and stronger correlations with time series of transport potential. In erosion dominated years, eroded volumes decrease from narrow to wider beaches. When accretion dominates, dune-volume changes are relatively constant alongshore. Dune erosion is therefore suggested to control spatial variability in dune-volume changes. On a scale of decades, the volume of foredunes tends to increase more on wider beaches. However, where widths exceed 200 to 300 m, this trend is no longer observed.
Highlights
Coastal foredunes are an important part of the Dutch coastal landscape since they form a natural flood defence
Aeolian sediment transport from the beach contributes to the dune volume, whereas marine processes associated with storm surges erode dune sediments thereby lowering the dune volume
Temporal variability is lowest on Schiermonnikoog (Fig. 3), Vlieland and Terschelling
Summary
Coastal foredunes are an important part of the Dutch coastal landscape since they form a natural flood defence. Foredunes are part of the beach-dune system within which sediment is transferred by aeolian and marine processes. Aeolian sediment transport from the beach contributes to the dune volume, whereas marine processes associated with storm surges erode dune sediments thereby lowering the dune volume. Depending on the balance between erosion and accretion, dune volume and morphology change over time. The ability to model and predict such changes is still limited [1,2]. This study examines how yearly fluctuations in regional climatic variables contribute to changes in foredune volume and how the balance between these forces is influenced by beach width
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.