Abstract
The mid‐latitude ocean's response to time‐dependent zonal wind‐stress forcing is studied using a reduced‐gravity, 1.5‐layer, shallow‐water model in two rectangular ocean basins of different sizes. The small basin is 1000 km × 2000 km and the larger one is 3000 km × 2010 km; the aspect ratio of the larger basin is quite similar to that of the North Atlantic between 20°N and 60°N. The parameter dependence of the model solutions and their spatio‐temporal variability subject to time‐independent wind stress forcing serve as the reference against which the results for time‐dependent forcing are compared. For the time‐dependent forcing case, three zonal‐wind profiles that mimic the seasonal cycle are considered in this study: (1) a fixed‐profile wind‐stress forcing with periodically varying intensity; (2) a wind‐stress profile with fixed intensity, but north–south migration of the mid‐latitude westerly wind maximum; and (3) a north–south migrating profile with periodically varying intensity. Results of the small‐basin simulations show the intrinsic variability found for time‐independent forcing to persist when the intensity of the wind forcing varies periodically. It thus appears that the physics behind the upper ocean's variability is mainly controlled by internal dynamics, although the solutions’ spatial patterns are now more complex, due to the interaction between the external and internal modes of variability. The north–south migration of wind forcing, however, does inhibit the inertial recirculation; its suppression increases with the amplitude of north–south migration in the wind‐stress forcing. Model solutions in the larger rectangular basin and at smaller viscosity exhibit more realistic recirculation gyres, with a small meridional‐to‐zonal aspect ratio, and an elongated eastward jet; the low‐frequency variability of these solutions is dominated by periodicities of 14 and 6–7 years. Simulations performed in this setting with a wind‐stress profile that involves seasonal variations of realistic amplitude in both the intensity and the position of the atmospheric jet show the seven‐year periodicity in the oceanic circulation to be robust. The intrinsic variability is reinforced by the periodic variations in the jet's intensity and weakened by periodic variations in the meridional position; the two effects cancel, roughly speaking, thus preserving the overall characteristics of the seven‐year mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.