Abstract
Spatial Decision Support Systems (SDSSs) often include models that can be used to assess the impact of possible decisions. These models usually simulate complex spatio-temporal phenomena, with input variables and parameters that are often hard to measure. The resulting model uncertainty is, however, rarely communicated to the user, so that current SDSSs yield clear, but therefore sometimes deceptively precise outputs. Inclusion of uncertainty in SDSSs requires modeling methods to calculate uncertainty and tools to visualize indicators of uncertainty that can be understood by its users, having mostly limited knowledge of spatial statistics. This research makes an important step towards a solution of this issue. It illustrates the construction of the PCRaster Land Use Change model (PLUC) that integrates simulation, uncertainty analysis and visualization. It uses the PCRaster Python framework, which comprises both a spatio-temporal modeling framework and a Monte Carlo analysis framework that together produce stochastic maps, which can be visualized with the Aguila software, included in the PCRaster Python distribution package. This is illustrated by a case study for Mozambique in which it is evaluated where bioenergy crops can be cultivated without endangering nature areas and food production now and in the near future, when population and food intake per capita will increase and thus arable land and pasture areas are likely to expand. It is shown how the uncertainty of the input variables and model parameters effects the model outcomes. Evaluation of spatio-temporal uncertainty patterns has provided new insights in the modeled land use system about, e.g., the shape of concentric rings around cities. In addition, the visualization modes give uncertainty information in an comprehensible way for users without specialist knowledge of statistics, for example by means of confidence intervals for potential bioenergy crop yields. The coupling of spatio-temporal uncertainty analysis to the simulation model is considered a major step forward in the exposure of uncertainty in SDSSs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.