Abstract

This study applied a number of statistical techniques aimed at quantifying the magnitude of projected mean rainfall and number of rainy days over Rwanda on monthly, seasonal, and annual timescales for the period 2015–2050. The datasets for this period were generated by BCM2.0 for the SRES emission scenario SRB1, CO2 concentration for the baseline scenario (2011–2030) using the stochastic weather generator (LARS-WG). It was observed that on average, there will be a steady decline in mean rainfall. Save for the short rainy season, a positive trend in mean rainfall is expected over the south-west, the north-east region, and the northern highlands. The other regions (central, south-east, and western regions) are likely to experience a decline in mean rainfall. The number of rainy days is expected to decrease in the central plateau and the south-eastern lowlands, while the south-west, the north-west, and north-east regions are expected to have a pattern of increased number of rainy days. This decline in mean rainfall and rainy days over a large part of Rwanda is an indicator of just how much the country is bound to experience reduced water supply for various uses (e.g., agriculture, domestic activities, and industrial activities).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.