Abstract

In part due to the proliferation of GPS-equipped mobile devices, massive volumes of geo-tagged streaming text messages are becoming available on social media. It is of great interest to discover most frequent nearby terms from such tremendous stream data. In this paper, we present novel indexing, updating, and query processing techniques that are capable of discovering top-k most frequent nearby terms over a sliding window. Specifically, given a query location and a set of geo-tagged messages within a sliding window, we study the problem of searching for the top-k terms by considering term frequency, spatial proximity, and term freshness. We develop a novel and efficient mechanism to solve the problem, including a quad-tree based indexing structure, indexing update technique, and a best-first based searching algorithm. An empirical study is conducted to show that our proposed techniques are efficient and fit for users’ requirements through varying a number of parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.