Abstract

Traffic prediction is highly significant for intelligent traffic systems and traffic management. eXtreme Gradient Boosting (XGBoost), a scalable tree lifting algorithm, is proposed and improved to predict more high-resolution traffic state by utilizing origin-destination (OD) relationship of segment flow data between upstream and downstream on the highway. In order to achieve fine prediction, a generalized extended-segment data acquirement mode is added by incorporating information of Automatic Number Plate Recognition System (ANPRS) from exits and entrances of toll stations and acquired by mathematical OD calculation indirectly without cameras. Abnormal data preprocessing and spatio-temporal relationship matching are conducted to ensure the effectiveness of prediction. Pearson analysis of spatial correlation is performed to find the relevance between adjacent roads, and the relative importance of input modes can be verified by spatial lag input and ordinary input. Two improved models, independent XGBoost (XGBoost-I) with individual adjustment parameters of different sections and static XGBoost (XGBoost-S) with overall adjustment of parameters, are conducted and combined with temporal relevant intervals and spatial staggered sectional lag. The early_stopping_rounds adjustment mechanism (EAM) is introduced to improve the effect of the XGBoost model. The prediction accuracy of XGBoost-I-lag is generally higher than XGBoost-I, XGBoost-S-lag, XGBoost-S, and other baseline methods for short-term and long-term multistep ahead. Additionally, the accuracy of the XGBoost-I-lag is evaluated well in nonrecurrent conditions and missing cases with considerable running time. The experiment results indicate that the proposed framework is convincing, satisfactory, and computationally reasonable.

Highlights

  • As a key technological component of intelligent transportation systems (ITS), traffic flow prediction has become an extensively researched topic

  • We compare the performance of XGBoost-I and XGBoost-S with the four baseline methods (SARIMA, convolutional neural network (CNN), random forest (RF), and long short-term memory network (LSTM)) based on the datasets

  • seasonal autoregressive integral moving average (SARIMA) explores the individual prediction in each road without reflecting the characteristics in lag input

Read more

Summary

Introduction

As a key technological component of intelligent transportation systems (ITS), traffic flow prediction has become an extensively researched topic. How to predict the traffic flow quickly with consideration of spatial cooperativity by congestion propagation of segment upstream and downstream flow and temporal multiple-step prediction, fully consider nonrecurrent generalization, and improve computing efficiency by time horizon of related timesteps remain to be investigated and answered by this paper. Based on ANPRS, we propose a section-flow calculation method for the highway to predict the traffic state finely and microcosmically. For the segment flow which cannot be obtained directly, we take the OD relationship between entrances and exits of toll stations and the license plate recognition relationship of upstream and downstream roads for mathematical calculation. We propose an improved XGBoost-based spatio-temporal method with the EAM optimization mode to predict the traffic flow of the segmented highway, by considering of multiple-step short-term and long-term prediction, influence of nonrecurrent incidents, and spatial interaction of sophisticated staggered sections. A conclusion and future research plan are given in the last section

Literature Review
Methodology
Method
Section 1
Case Studies
Methods
Conclusion and Future
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call