Abstract
An important aspect for an improved cardiac functional analysis is the accurate segmentation of the left ventricle (LV). A novel approach for fully-automated segmentation of the LV endocardium and epicardium contours is presented. This is mainly based on the natural physical characteristics of the LV shape structure. Both sides of the LV boundaries exhibit natural elliptical curvatures by having details on various scales, i.e. exhibiting fractal-like characteristics. The fractional Brownian motion (fBm), which is a non-stationary stochastic process, integrates well with the stochastic nature of ultrasound echoes. It has the advantage of representing a wide range of non-stationary signals and can quantify statistical local self-similarity throughout the time-sequence ultrasound images. The locally characterized boundaries of the fBm segmented LV were further iteratively refined using global information by means of second-order moments. The method is benchmarked using synthetic 3D+time echocardiographic sequences for normal and different ischemic cardiomyopathy, and results compared with state-of-the-art LV segmentation. Furthermore, the framework was validated against real data from canine cases with expert-defined segmentations and demonstrated improved accuracy. The fBm-based segmentation algorithm is fully automatic and has the potential to be used clinically together with 3D echocardiography for improved cardiovascular disease diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.