Abstract

We measured sensitivity to binocular correlation in dynamic random-dot stereograms that defined moving sinusoidal gratings-in-depth. At a range of spatial frequencies and drift rates we established sensitivity by adding Gaussian distributed disparity noise to the modulation of disparity that defined a cyclopean grating, and finding the noise amplitude that rendered the grating just detectable. This permitted correlation thresholds to be measured at a range of suprathreshold disparity amplitudes. Spatial requirements for binocular correlation depend little on temporal frequency, and vice versa. This suggests that binocular correlation mechanisms can be characterized by independent spatial and temporal sensitivity functions. The temporal frequency function has a low pass characteristic. Sensitivity declines above about 1 c/sec, reaching its limit at 4–8 c/sec. The spatial characteristic depends greatly on the amplitude of disparity modulation, changing from band pass at low amplitude to low pass at high amplitude. The maximum resolvable spatial frequency is 4–6 c/deg, but declines sharply for relatively high amplitudes. The interaction between amplitude and spatial frequency cannot be explained by fixed high or low limits on detectable disparity gradients.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.