Abstract

This study presents a spatio‐temporal motion descriptor that is computed from a spatially‐constrained decomposition and applied to online classification and recognition of human activities. The method starts by computing a dense optical flow without explicit spatial regularisation. Potential human actions are detected at each frame as spatially consistent moving regions of interest (RoIs). Each of these RoIs is then sequentially partitioned to obtain a spatial representation of small overlapped subregions with different sizes. Each of these region parts is characterised by a set of flow orientation histograms. A particular RoI is then described along the time by a set of recursively calculated statistics that collect information from the temporal history of orientation histograms, to form the action descriptor. At any time, the whole descriptor can be extracted and labelled by a previously trained support vector machine. The method was evaluated using three different public datasets: (i) the ViSOR dataset was used for global classification obtaining an average accuracy of 95% and for recognition in long sequences, achieving an average per‐frame accuracy of 92.3%. (ii) The KTH dataset was used for global classification and (iii) the UT‐datasets were used for recognition task, obtaining an average accuracy of 80% (frame rate).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.