Abstract
Rangelands primarily provide forage for grazing and browsing animals, yet their ecosystems are degraded due to natural causes and anthropogenic activities such as pastoralism, tourism, and ranching. Increased rangeland detrimental effects led the present research to model the severity of rangeland degradation in the Upper Ewaso Ngiro River Basin (UENRB) in Kenya between 1986 and 2021 and predict the future scenario for 2031. The severity of rangeland degradation was analysed using the multi-criteria analytic hierarchical process and principal component analysis, while the cellular automata Markov chain-analysis model was used for prediction. The models utilized datasets including land-use land cover, surface albedo, bareness index, vegetation health index, soil moisture index, topographic wetness index, reconnaissance drought index, k-factor, slope, and population density. The findings indicated that rangeland degradation varied sporadically, with the reconnaissance drought index being the significant influencing parameter, contributing to about 19.2% of the total degradation. In average, between the years under study, non-rangeland zones covered 10.4%, while low, moderate, high, and very high degradability severity covered 15.3%, 49.1%, 25.2%, and 0%, respectively. Prediction results for the year 2031 revealed that non-rangeland zones will cover 5.3%, whereas low, moderate, high and very high will cover 18.1%, 39.2%, 37.4%, and 0%, respectively. The hybrid model proved to be effective in modeling rangeland degradation. The study recommends the county and national governments to propose and adopt by-laws on legislation to regulate the exploitation of natural resources in the study area in order to restore the rangelands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.