Abstract
ABSTRACTThis paper proposes a linear mixed model (LMM) with spatial effects, trend, seasonality and outliers for spatio-temporal time series data. A linear trend, dummy variables for seasonality, a binary method for outliers and a multivariate conditional autoregressive (MCAR) model for spatial effects are adopted. A Bayesian method using Gibbs sampling in Markov Chain Monte Carlo is used for parameter estimation. The proposed model is applied to forecast rice and cassava yields, a spatio-temporal data type, in Thailand. The data have been extracted from the Office of Agricultural Economics, Ministry of Agriculture and Cooperatives of Thailand. The proposed model is compared with our previous model, an LMM with MCAR, and a log transformed LMM with MCAR. We found that the proposed model is the most appropriate, using the mean absolute error criterion. It fits the data very well in both the fitting part and the validation part for both rice and cassava. Therefore, it is recommended to be a primary model for forecasting these types of spatio-temporal time series data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.