Abstract
Global demand for resources currently exceeds Earth's carrying capacity. Representing a majority of global resource use, and associated environmental burdens, cities must address overconsumption by improving material circularity. This work explores the potential for the construction sector to reduce the indirect environmental impacts connected to increasing material circularity in the coming years. An urban metabolism simulation tool based on system dynamics and life cycle thinking is deployed to estimate the effects of circularization on environmental impacts. Illustrating with a case study of Montréal (Canada), impacts are disaggregated to supplier nations, provinces and territories. As material circularity increases over time, impacts decrease in the sub-national and international regions, but increase in the city due to the activities associated with second life valorisation. In supplier regions, especially Brazil, Mexico, and Norway, environmental impacts decrease between 80 and 100 % in all 18 impact categories by 2050. However, these decreases are found to be shared mostly among Canada's more developed trading partners, revealing an environmental justice risk for circular materiality to disproportionally favour the better-off. Five of the 18 categories did not undergo spatial burden-shifting, improving at all spatial levels in the assessment, while 13 showed decreased environmental impacts remotely at the expense of increased impacts within Montréal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.