Abstract

An accurate investigation of bio-physical and chemical parameters as proxy of in situ water quality conditions in the Himalayan region is highly challenging owing to cumbersome, strenuous, and physically exhausting sampling exercises at high altitude locations. The upper stretches of Yamuna River in the Himachal Pradesh are typical examples of such sampling locations that have rarely been examined in the past studies. A widely accepted and recognized QUAL 2Kw model is applied for estimating the water quality parameters on the upper segment of the Yamuna River from Paonta Sahib to Cullackpur. These water quality indicators mainly included electric conductivity, pH, dissolved oxygen, temperature, carbonaceous biological oxygen demand (CBOD), inorganic suspended solids, total nitrogen, total phosphorus, and alkalinity, which were systematically investigated for predicting the spatio-temporal trends during the year 2018. A total of 12 distantly located river sites were identified for sample collection and data validation using QUAL 2Kw model. The present investigation attempts to reveal long-term degraded impact of untreated wastewater and biased agricultural practices on the water quality conditions over the upper stretches of Yamuna River. The QUAL 2Kw-derived values for selected variables were inter-compared with in situ values, and any deviation from measured values was ascertained based on meaningful statistical measures. The lower error of RMSE, MRE, and BIAS, corresponding to < 15%, ± 10%., ± 20%, and ~ 1 slope evidently indicated better matchup of values, wherein, higher slope correlation coefficient (R2) of ~ 90% indicated the robust performance of the QUAL 2Kw algorithm in accurately predicting the chosen variables. A comparative assessment of QUAL 2Kw and WASP has been performed to justify aptness of water quality model in scenarios of lean flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call