Abstract
We present new spatio-temporal geostatistical modelling and interpolation capabilities of the R package gstat. Various spatio-temporal covariance models have been implemented, such as the separable, product-sum, metric and sum-metric models. In a real-world application we compare spatiotemporal interpolations using these models with a purely spatial kriging approach. The target variable of the application is the daily mean PM 10 concentration measured at rural air quality monitoring stations across Germany in 2005. R code for variogram fitting and interpolation is presented in this paper to illustrate the workflow of spatio-temporal interpolation using gstat. We conclude that the system works properly and that the extension of gstat facilitates and eases spatio-temporal geostatistical modelling and prediction for R users
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.