Abstract
Sentinel-2 and Sentinel-3 are two newly launched satellites for global monitoring. The Sentinel-2 Multispectral Imager (MSI) and Sentinel-3 Ocean and Land Colour Instrument (OLCI) sensors have very different spatial and temporal resolutions (Sentinel-2 MSI sensor 10m, 20m and 60m, 10days, albeit 5days with 2 sensors, conditional upon clear skies; Sentinel-3 OLCI sensor 300m, <1.4days with 2 sensors). For local monitoring (e.g., the growing cycle of plants) one either has the desired spatial or temporal resolution, but not both. In this paper, spatio-temporal fusion is considered to fuse Sentinel-2 with Sentinel-3 images to create nearly daily Sentinel-2 images. A challenging issue in spatio-temporal fusion is that there can be very few cloud-free fine spatial resolution images temporally close to the prediction time, or even available, strong temporal (i.e., seasonal) changes may exist. To this end, a three-step method consisting of regression model fitting (RM fitting), spatial filtering (SF) and residual compensation (RC) is proposed, which is abbreviated as Fit-FC. The Fit-FC method can be performed using only one Sentinel-3–Sentinel-2 pair and is advantageous for cases involving strong temporal changes (i.e., mathematically, the correlation between the two Sentinel-3 images is small). The effectiveness of the method was validated using two datasets. The created nearly daily Sentinel-2 time-series images have great potential for timely monitoring of highly dynamic environmental, agricultural or ecological phenomena.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.