Abstract

Driver fatigue is one of the leading causes of road accidents. It affects the mental vigilance of the driver and reduces his personal capacity to drive a vehicle in full safety. These factors increase the risk of human errors which could involve deaths and wounds. Consequently, the development of an automatic system, which controls the driver fatigue and prevents him from accidents in advance, has received a growing interest. In this work, we have proposed a fusion system for drowsiness detection based on blinking measurement and the 3D head pose estimation. We have studied the driver's eye behaviors by analysing a non-stationary and non-linear signal and we estimate the head rotation in the three directions $$Yaw$$Yaw, $$Pitch$$Pitch, and $$Roll$$Roll by exploiting only three interest points of the face. Our suggested system of fusion presents three levels of drowsiness: awake, tired, and very tired. This system is evaluated by both $$DEAP$$DEAP and $$MiraclHB$$MiraclHB databases. The evaluation shows many promising results and shows the effectiveness of the suggested approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.