Abstract

BackgroundEpidemics of meningococcal meningitis (MM) recurrently strike the African Meningitis Belt. This study aimed at investigating factors, still poorly understood, that influence annual incidence of MM serogroup A, the main etiologic agent over 2004–2010, at a fine spatial scale in Niger.Methodology/Principal FindingsTo take into account data dependencies over space and time and control for unobserved confounding factors, we developed an explanatory Bayesian hierarchical model over 2004–2010 at the health centre catchment area (HCCA) level. The multivariate model revealed that both climatic and non-climatic factors were important for explaining spatio-temporal variations in incidence: mean relative humidity during November–June over the study region (posterior mean Incidence Rate Ratio (IRR) = 0.656, 95% Credible Interval (CI) 0.405–0.949) and occurrence of early rains in March in a HCCA (IRR = 0.353, 95% CI 0.239–0.502) were protective factors; a higher risk was associated with the percentage of neighbouring HCCAs having at least one MM A case during the same year (IRR = 2.365, 95% CI 2.078–2.695), the presence of a road crossing the HCCA (IRR = 1.743, 95% CI 1.173–2.474) and the occurrence of cases before 31 December in a HCCA (IRR = 6.801, 95% CI 4.004–10.910). At the study region level, higher annual incidence correlated with greater geographic spread and, to a lesser extent, with higher intensity of localized outbreaks.ConclusionsBased on these findings, we hypothesize that spatio-temporal variability of MM A incidence between years and HCCAs result from variations in the intensity or duration of the dry season climatic effects on disease risk, and is further impacted by factors of spatial contacts, representing facilitated pathogen transmission. Additional unexplained factors may contribute to the observed incidence patterns and should be further investigated.

Highlights

  • Meningococcal meningitis (MM) is caused by Neisseria meningitidis (Nm), a commensal bacterium of the human nasopharynx transmitted by direct contact with respiratory droplets from carriers and causing meningitis after crossing the nasopharyngeal mucosa

  • Based on these findings, we hypothesize that spatio-temporal variability of MM A incidence between years and health centre catchment area (HCCA) result from variations in the intensity or duration of the dry season climatic effects on disease risk, and is further impacted by factors of spatial contacts, representing facilitated pathogen transmission

  • Epidemics of meningococcal meningitis recurrently strike countries of the African Meningitis Belt [1]. In this sub-Saharan area, MM dynamics is characterized by seasonality and spatiotemporal heterogeneity: the disease is endemic all year round but every dry season, a hyper-endemic or epidemic increase in incidence is observed, the magnitude of which varies between years and regions [2,3]

Read more

Summary

Introduction

Meningococcal meningitis (MM) is caused by Neisseria meningitidis (Nm), a commensal bacterium of the human nasopharynx transmitted by direct contact with respiratory droplets from carriers and causing meningitis after crossing the nasopharyngeal mucosa. Epidemics of meningococcal meningitis recurrently strike countries of the African Meningitis Belt [1]. In this sub-Saharan area, MM dynamics is characterized by seasonality and spatiotemporal heterogeneity: the disease is endemic all year round but every dry season, a hyper-endemic or epidemic increase in incidence is observed, the magnitude of which varies between years and regions [2,3]. Within a country, localized outbreaks are reported at sub-district scales [4,5,6]. Epidemics of meningococcal meningitis (MM) recurrently strike the African Meningitis Belt. This study aimed at investigating factors, still poorly understood, that influence annual incidence of MM serogroup A, the main etiologic agent over 2004–2010, at a fine spatial scale in Niger

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.