Abstract

Hexokinase-3 (HK3) is a member of hexokinase family, which can catalyze the first step of glucose metabolism. It can increase ATP levels, reduce the production of reactive oxygen species, increase mitochondrial biogenesis, protect mitochondrial membrane potential and play an antioxidant role. However, the change of its expression in spinal cord after injury is still unknown. In this study, we investigated the spatio-temporal expression of HK3 in the spinal cords by using a spinal cord injury (SCI) model in adult female Sprague-Dawley rats. Quantitative reverse transcription-PCR and western blot analysis revealed that HK3 could be detected in sham-opened spinal cords. After SCI, it gradually increased, reached a peak at 7 days post-injury (dpi), and then gradually decreased with the prolonging of injury time, but still maintained at a higher level for up to 28 dpi (the longest time evaluated in this study). Immunofluorescence staining showed that HK3 was found in GFAP+, β-tubulin III+ and IBA-1+ cells in sham-opened spinal cords. After SCI, in addition to the above-mentioned cells, it could also be found in CD45+ and CD68+ cells. These results demonstrate that HK3 is mainly expressed in astrocytes, neurons and microglia in normal spinal cords, and could rapidly increase in infiltrated leukocytes, activated microglia/macrophages and astrocytes after SCI. These data suggest that HK3 may be involved in the pathologic process of SCI by promoting glucose metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.