Abstract
Global warming can cause deep and extensive changes in the Earth’s climate and changes in the time and place of climatic phenomena. The present trend analysis study assesses cold stress using the thermo-hygrometric index (THI) in the two seasons of autumn and winter in outdoor environments in Iran. The data related to the average of the two variables of daily air temperature and relative humidity from 60 synoptic meteorological stations for a statistical period of 30 years were obtained from the Iranian Meteorological Organization. The THI index was calculated for autumn and winter, and the level of thermal discomfort was determined for each station. The Mann–Kendall statistical test with the help of Minitab ver17.1.0 software was also used to investigate the changes in air temperature, relative humidity and THI index. The THI for autumn increased in 68% of the stations, and this increasing trend is statistically significant in 51% of these stations. The THI for winter increased in 83% of the stations, and this increasing trend is statistically significant in 51% of these stations. In autumn, 53% of the stations were in the range of thermal discomfort, and in winter only 5% were in the range of thermal comfort. The decreasing trend in THI in some climatic types, along with the increasing trend in air temperature, can indicate the decrease in relative humidity in the monitored stations during the studied years. It is recommended to know the temporal and spatial distribution and the probability of occurrence of cold stress through the use of THI in order to adopt preventive measures and policies in the outdoors in Iran.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.