Abstract

Most tropical evergreen rain forests are characterised by varying degrees of precipitation seasonality that influence plant phenology and litterfall dynamics. Soil microbes are sensitive to soil water:air ratio and to nutrient availability. We studied if within-year seasonality in precipitation and litterfall-derived nutrient input resulted in predictable seasonal variation in soil bacterial diversity/microbial functional groups in an Amazonian forest. We characterised the spatio-temporal dynamics of microbial communities from the plot to the stand scales and related them to precipitation seasonality and spatial variability in soil characteristics. Community composition and functional diversity showed high spatial heterogeneity and was related to variability in soil chemistry at the stand level. Large species turnover characterised plot level changes over time, reflecting precipitation seasonality-related changes in soil nutrient and moisture regimes. The abundance of decomposers was highest during the rainy season, characterised also by anaerobic saprophytes and N2-fixers adapted to fluctuating redox conditions. In contrast, Beijerinckiaceae, likely derived from the phyllosphere, were found at higher abundances when litter inputs and accumulation were highest. We showed that in a mildly seasonal rain forest, the composition of soil microbial communities appears to be following canopy phenology patterns and the two are interlinked and drive soil nutrient availability.

Highlights

  • Studies of tropical forest phenology have shown correlations between patterns of precipitation seasonality, litterfall peaks and new leaf production, with ensuing patterns for gross primary production[1,2]

  • In an ecosystem that lacks a restriction of the growing season by low temperature, (H1) bacterial community composition is not affected by spatial variability in soil characteristics or by precipitation and litterfall/fine root related seasonality patterns; (H2) bacterial community composition is affected by spatial variability of resources but not by seasonality; (H3) bacterial community composition is affected by precipitation and litterfall/fine root related seasonality patterns and this community change overrides any spatial variability; and (H4) bacterial community composition reflects both spatial and temporal heterogeneity, i.e. bacterial community patterns are shaped by both high spatial heterogeneity and seasonality factors

  • No significant differences were found for Species richness (SR), H’ and Phylogenetic diversity (PD), for any paired comparisons between sampling dates

Read more

Summary

Introduction

Studies of tropical forest phenology have shown correlations between patterns of precipitation seasonality, litterfall peaks and new leaf production, with ensuing patterns for gross primary production (photosynthesis)[1,2]. Variations in soil bacterial communities in extratropical natural ecosystems in response to seasonal changes in environmental variables have been reported from alpine tundra[9,10] to temperate forests[11,12] Across these different biomes, there have been similar taxonomic shifts observed between seasons, i.e. a higher relative abundance of Actinobacteria in winter and of Acidobacteria and certain Proteobacteria in summer[9,10,11]. To determine the influence of spatial pattern (i.e. soil chemistry) over a scale that ranged from 1 km and within-year temporal variability (i.e. seasonality in precipitation and litterfall-derived nutrient input: Time 1, wet season; Time 2, transition; Time 3, dry season) on soil bacterial communities/functional groups (defined here as process mediators such as decomposers, N2-fixers, nitrifiers, denitrifiers, methanogens, methane oxidizers, sulphate- and Fe(III)- reducing bacteria) we addressed four alternative hypotheses (Fig. 1). In an ecosystem that lacks a restriction of the growing season by low temperature, (H1) bacterial community composition is not affected by spatial variability in soil characteristics or by precipitation and litterfall/fine root related seasonality patterns; (H2) bacterial community composition is affected by spatial variability of resources but not by seasonality; (H3) bacterial community composition is affected by precipitation and litterfall/fine root related seasonality patterns (i.e. as the dry season is characterised by higher litterfall inputs and lower fine root biomass than the rainy season, dry season bacterial communities differ significantly from rainy season communities) and this community change overrides any spatial variability; and (H4) bacterial community composition reflects both spatial and temporal heterogeneity, i.e. bacterial community patterns are shaped by both high spatial heterogeneity and seasonality factors

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.