Abstract

In the present paper, a detailed investigation of the spatio-temporal dynamics of the recently developed time reversal microwave plasma source is presented. This novel source allows to ignite a plasma at a desired location in a reverberant cavity by focusing the electromagnetic energy in time and space. An important feature is the possibility to control the plasma position only by changing the input microwave waveform. The source is operated in a repetitive pulsed mode with very low duty cycle (typically 5 × 10−2%). Nanosecond pulses have rise time lower than 1 ns. The generated plasmas have typical sizes in the millimeter range and are observed using imaging for dozens of nanoseconds. The plasma behavior is investigated for different pressures and repetition frequencies. A strong dependence is observed between each discharge pulse suggesting the existence of an important memory effect. The latter is probably due to argon metastable atoms and/or residual charges remaining in the post-discharge and allowing the next breakdown to occur at a moderate electric field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.