Abstract
The study of spatio-temporal behaviour of ecological systems is fundamentally important as it can provide deep understanding of species interaction and predict the effects of environmental changes. In this paper, we first propose a spatial model with prey taxis for planktonic systems, in which we also consider the herb behaviour in prey and effect of the hyperbolic mortality rate. Applying the homogeneous Neumann boundary condition to the model and using prey-tactic sensitivity coefficient as bifurcation parameter, we then detailedly analyse the stability and bifurcation of the steady state of the system: firstly, we carry out a study of the equilibrium bifurcation, showing the occurrence of fold bifurcation, Hopf bifurcation and the BT bifurcation; then by using an abstract bifurcation theory and taking prey-tactic sensitivity coefficient as the bifurcation parameter, we investigate the Turing–Hopf bifurcation, obtaining a branch of stable non-constant solutions bifurcating from the positive equilibrium, and our results show that prey-taxis can yield the occurrence of spatio-temporal patterns; finally, numerical simulations are carried out to illustrate our theoretical results, showing the existence of a periodic solution when the prey-tactic sensitivity coefficient is away from the critical value.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.