Abstract

Abstract Consistent monitoring of surface water dynamics is essential for water resources, flood risk management, and addressing the challenges posed by climate change, urbanization. Nhat Le River Basin witnesses significant and noticeable dynamics in surface water on a yearly basis due to water-related disasters like floods and droughts. This article presents the first comprehensive study to systematically map and analyse the long-term (2016–2022) spatiotemporal dynamics of surface water in the Nhat Le River Basin of Vietnam, utilizing Sentinel-1 data. The results reveal that the optimal threshold for separating water from non-water pixels is −19 dB, with an overall accuracy of 0.93–0.94 and a Kappa coefficient of 0.77–0.82. Through quantitative analysis, the study characterizes seasonal and interannual variations in the surface water extent, contributing to an enhanced understanding of flood patterns and associated risks in a data-scarce region. Our analysis reveals the Kien Giang river delta as the most flooding-vulnerable sub-region, underscoring the importance of targeted risk management and adaptation planning in this area. A Google Earth Engine Tool is developed for automatic detecting, monitoring, and accessing the spatiotemporal dynamics of surface water in Nhat Le River Basin over the period 2016–2022 and is available on GitHub (https://github.com/MinhVu25/Surface_Water_Dynamics_2023).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call