Abstract
Our research aims at discovering useful knowledge from the large collection of satellite images of typhoons using data mining approaches. We first introduce the creation of the typhoon image collection that consists of around 34,000 typhoon images for the northern and southern hemisphere, providing the medium-sized, richly-variational and quality-controlled data collection suitable for spatio-temporal data mining research. Next we apply several data mining approaches for this image collection. We start with spatial data mining, where principal component analysis is used for extracting basic components and reducing dimensionality, and it revealed that the major principal components describe latitudinal structures and spiral bands. Moreover, clustering procedures give the “birds-eye-view” visualization of typhoon cloud patterns. We then turn to temporal data mining, including state transition rules, but we demonstrate that it involves intrinsic difficulty associated with the nonlinear dynamics of the atmosphere, or chaos. Finally we briefly introduce our system IMET (Image Mining Environment for Typhoon analysis and prediction), which is designed for the intelligent and efficient searching and browsing of the typhoon image collection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.