Abstract
The implementation of light-sensitive Pickering emulsions with spatio-temporal responsiveness in advanced applications like drug-delivery, colloidal or reaction engineering would open new avenues. However, curiously, light-sensitive Pickering emulsions are barely studied in the literature and their biocompatibility and/or degradability scarcely addressed. Thus, their development remains a major challenge. As an original strategy, we synthesized light-sensitive nanoparticles based on biocompatible Poly(NitroBenzylAcrylate) grafted dextran (Dex-g-PNBA) to stabilize O/W Pickering emulsions. The produced emulsions were stable in time and could undergo time and space-controlled destabilization under light stimulus. Irradiation time and alkaline pH-control of the aqueous phase were proved to be the actual key drivers of destabilization. As the nanoparticles themselves were photolyzed under light stimulus, possible harmful effects linked to accumulation of nanomaterials should be avoided. In addition to UV light (365 nm), visible light (405 nm) was successfully used for the spatio-temporal destabilization of the emulsions, offering perspectives for life science applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.