Abstract
In this study, HcVGH, a method that learns spatio-temporal categories by segmenting first-person-view (FPV) videos captured by mobile robots, is proposed. Humans perceive continuous high-dimensional information by dividing and categorizing it into significant segments. This unsupervised segmentation capability is considered important for mobile robots to learn spatial knowledge. The proposed HcVGH combines a convolutional variational autoencoder (cVAE) with HVGH, a past method, which follows the hierarchical Dirichlet process-variational autoencoder-Gaussian process-hidden semi-Markov model comprising deep generative and statistical models. In the experiment, FPV videos of an agent were used in a simulated maze environment. FPV videos contain spatial information, and spatial knowledge can be learned by segmenting them. Using the FPV-video dataset, the segmentation performance of the proposed model was compared with previous models: HVGH and hierarchical recurrent state space model. The average segmentation F-measure achieved by HcVGH was 0.77; therefore, HcVGH outperformed the baseline methods. Furthermore, the experimental results showed that the parameters that represent the movability of the maze environment can be learned.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.