Abstract

A full-scale concrete-filled steel tube (CFST) examination was performed on the Tian'e Longtan Bridge, featuring a 600-meter span and 0.9-meter steel tube diameter, to assess internal autogenous shrinkage distribution. This study employed vibrating wire strain gauges and distributed optical fibers to measure the shrinkage and detect cracking in the core concrete. Analysis of the test results led to the formulation of models that describe the axial and radial shrinkage behavior over time and space. Increased optical fiber strain highlighted regions undergoing local plastic softening and cracking. This research facilitates the early prediction and precise identification of potential cracking areas in the core concrete through optical fiber monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call