Abstract
Understanding the factors influencing urban water use is critical for meeting demand and conserving resources. To analyze the relationships between urban household-level water demand and potential drivers, we develop a method for Bayesian variable selection in partially linear additive regression models, particularly suited for high-dimensional spatio-temporally dependent data. Our approach combines a spike-and-slab prior distribution with a modified version of the Bayesian group lasso to simultaneously perform selection of null, linear, and nonlinear models and to penalize regression splines to prevent overfitting. We investigate the effectiveness of the proposed method through a simulation study and provide comparisons with existing methods. We illustrate the methodology on a case study to estimate and quantify uncertainty of the associations between several environmental and demographic predictors and spatio-temporally varying household-level urban water demand in Tampa, FL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Stochastic Environmental Research and Risk Assessment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.