Abstract

Abstract Electron energy loss spectroscopy (EELS) is often utilized to characterize localized surface plasmon modes supported by plasmonic antennas. However, the spectral resolution of this technique is only mediocre, and it can be rather difficult to resolve modes close in the energy, such as coupled modes of dimer antennas. Here, we address this issue for a case study of the dimer plasmonic antenna composed of two gold discs. We analyze four nearly degenerate coupled plasmon modes of the dimer: longitudinal and transverse bonding and antibonding dipole modes. With a traditional approach, which takes into account the spectral response of the antennas recorded at specific points, the modes cannot be experimentally identified with EELS. Therefore, we employ the spectral and spatial sensitivity of EELS simultaneously. We propose several metrics that can be utilized to resolve the modes. First, we utilize electrodynamic simulations to verify that the metrics indeed represent the spectral positions of the plasmon modes. Next, we apply the metrics to experimental data, demonstrating their ability to resolve three of the above-mentioned modes (with transverse bonding and antibonding modes still unresolved), identify them unequivocally, and determine their energies. In this respect, the spatio-spectral metrics increase the information extracted from electron energy loss spectroscopy applied to plasmonic antennas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.