Abstract

Spatial-temporal network data forecasting is of great importance in a huge amount of applications for traffic management and urban planning. However, the underlying complex spatial-temporal correlations and heterogeneities make this problem challenging. Existing methods usually use separate components to capture spatial and temporal correlations and ignore the heterogeneities in spatial-temporal data. In this paper, we propose a novel model, named Spatial-Temporal Synchronous Graph Convolutional Networks (STSGCN), for spatial-temporal network data forecasting. The model is able to effectively capture the complex localized spatial-temporal correlations through an elaborately designed spatial-temporal synchronous modeling mechanism. Meanwhile, multiple modules for different time periods are designed in the model to effectively capture the heterogeneities in localized spatial-temporal graphs. Extensive experiments are conducted on four real-world datasets, which demonstrates that our method achieves the state-of-the-art performance and consistently outperforms other baselines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.