Abstract

Based on the background of urbanization in China, we used the dynamic spatial panel Durbin model to study the driving mechanism of ozone pollution empirically. We also analyzed the spatial distribution of ozone driving factors using the GTWR. The results show that: i) The average annual increase of ozone concentration in ambient air in China from 2015 to 2019 was 1.68μg/m3, and 8.39μg/m3 elevated the year 2019 compared with 2015. ii) The Moran's I value of ozone in ambient air was 0.027 in 2015 and 0.209 in 2019, showing the spatial distribution characteristics of "east heavy and west light" and "south low and north high". iii) Per capita GDP industrial structure, population density, land expansion, and urbanization rate have significant spillover effects on ozone concentration, and the regional spillover effect is greater than the local effect. R&D intensity and education level have a significant negative impact on ozone concentration. iv) There is a decreasing trend in the inhibitory effect of educational attainment and R&D intensity on ozone concentration, and an increasing trend in the promotional effect of population urbanization rate, land expansion, and economic development on ozone concentration. Empirical results suggest a twofold policy meaning: i) to explore the causes behind the distribution of ozone from the new perspective of urbanization, and to further the atmospheric environmental protection system and ii) to eliminate the adverse impacts of ozone pollution on nature and harmonious social development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call