Abstract
Efficiently mapping of cell types in situ remains a major challenge in spatial transcriptomics. Most spot deconvolution tools ignore spatial coordinate information and perform extremely slow on large datasets. Here, we introduce SpatialPrompt, a spatially aware and scalable tool for spot deconvolution and domain identification. SpatialPrompt integrates gene expression, spatial location, and single-cell RNA sequencing (scRNA-seq) dataset as reference to accurately infer cell-type proportions of spatial spots. SpatialPrompt uses non-negative ridge regression and graph neural network to efficiently capture local microenvironment information. Our extensive benchmarking analysis on Visium, Slide-seq, and MERFISH datasets demonstrated superior performance of SpatialPrompt over 15 existing tools. On mouse hippocampus dataset, SpatialPrompt achieves spot deconvolution and domain identification within 2 minutes for 50,000 spots. Overall, domain identification using SpatialPrompt was 44 to 150 times faster than existing methods. We build a database housing 40 plus curated scRNA-seq datasets for seamless integration with SpatialPrompt for spot deconvolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.