Abstract

In this study, nanoscale-thickness Al2O3 layers for moisture barrier films were developed by a spatially resolved remote plasma atomic layer deposition process. The effect of various process parameters was investigated on the atomic concentration of Al2O3 films including the substrate temperature, plasma power, and scanning speed of the substrates. Carbon components were identified as major impurities in the films and is reduced at high temperature, high plasma power and low speed. Optimum conditions are maximum temperature of 80 °C to prevent plastic substrate deformation, a maximum plasma power of 150 W without surface damage and maximum speed of 125 mm/sec to maintain a low carbon contents. The water vapor transmission rate (WVTR) of 3.2 × 10 −4 g/(m2·day) was achieved with 30 nm-thick film in optimum condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.