Abstract

The Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) requires airlines to offset their greenhouse gas (GHG) emissions above 2019 levels by either buying carbon offsets or using Sustainable Aviation Fuels (SAFs). These are drop-in jet fuels made from biomass or other renewable resources that reduce GHG emissions by at least 10 % compared to kerosene and meet certain sustainability criteria. This study assesses the direct land use change (DLUC) emissions of SAF, i.e., GHG emissions from on-site land conversion from previous uses (excluding primary forests, peatlands, wetlands, and protected and biodiversity-rich areas) into alternative feedstocks, considering spatial variability in global yields and land carbon stocks. The results provide DLUC values and carbon payback times at 0.5-degree resolution for six SAF pathways, with and without irrigation and a medium-input intensity, according to CORSIA sustainability criteria. When excluding CORSIA non-compliant areas, soybean SAF shows the highest mean DLUC factor (31.9 ± 20.7 gCO2/MJ), followed by reed canary grass and maize. Jatropha SAF shows the lowest mean DLUC factor (3.6 ± 31.4 gCO2/MJ), followed by miscanthus and switchgrass. The latter feedstocks show potential for reducing GHG emissions over large areas but with relatively greater variability. Country-average DLUC values are higher than accepted ILUC ones for all pathways except for maize. To ensure the GHG benefits of CORSIA, feedstocks must be produced in areas where not only carbon stocks are relatively low but also where attainable yields are sufficiently high. The results help identify locations where the combination of these two factors may be favourable for low-DLUC SAF production. Irrigated miscanthus offers the highest SAF production potential (2.75 EJ globally) if grown on CORSIA-compliant cropland and grassland areas, accounting for ∼1/5 of the total kerosene used in 2019. Quantifying other environmental impacts of SAFs is desirable to understand sustainability trade-offs and financial constraints that may further limit production potentials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.