Abstract

This paper presents a distributed spatial estimation and prediction approach to address the centrally-computed scheme of Gaussian Process regression at each robotic sensor in resource-constrained networks of mobile, wireless and noisy agents monitoring physical phenomena of interest. A mobile sensor independently estimate its own parameters using collective measurements from itself and local neighboring agents as they navigate through the environment. A spatially-distributed prediction algorithm is designed utilizing methods of Jacobi over-relaxation and discrete-time average consensus to enable a robotic sensor to update its estimation of obtaining the global model parameters and recursively compute the global goal of inference. A distributed navigation strategy is also considered to drive sensors to the most uncertain locations enhancing the quality of prediction and learning parameters. Experimental results in a real-world data set illustrate the effectiveness of the proposed approach and is highly comparable to those of the centralized scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.