Abstract
Spatially varying mixture models are characterized by the dependence of their mixing proportions on location (contextual mixing proportions) and they have been widely used in image segmentation. In this work, Gauss-Markov random field (MRF) priors are employed along with spatially varying mixture models to ensure the preservation of region boundaries in image segmentation. To preserve region boundaries, two distinct models for a line process involved in the MRF prior are proposed. The first model considers edge preservation by imposing a Bernoulli prior on the normally distributed local differences of the contextual mixing proportions. It is a discrete line process model whose parameters are computed by variational inference. The second model imposes Gamma prior on the Student's-t distributed local differences of the contextual mixing proportions. It is a continuous line process whose parameters are also automatically estimated by the Expectation-Maximization (EM) algorithm. The proposed models are numerically evaluated and two important issues in image segmentation by mixture models are also investigated and discussed: the constraints to be imposed on the contextual mixing proportions to be probability vectors and the MRF optimization strategy in the frameworks of the standard and variational EM algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.