Abstract

The spatially-targeted fabrication of bimetallic microstructures coexisting in the supporting hydrogel is demonstrated by multi-photon photoreduction. Microstructures composed of gold and silver were fabricated along a predefined trajectory by taking advantages of the hydrogel's ionic permeability. Different resonant wavelengths of optical absorption were obtained for gold, silver, and their bimetallic structures. Transmission electron microscopy and energy dispersive X-ray analysis revealed that the optical properties are attributable to the formation of bimetallic structure consisted of core-shell nanoparticles. The fabrication of dissimilar metal structures within hydrogel is a promising technique for optically driven actuators in soft robotics and sensing applications by allowing for site-selective optical properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.