Abstract
In this paper, we show a framework for partial bot rejection based on spatially supervised text mining from social media messages. We show qualitative results towards the reduction of known bots and give hints on how this cleaning technique can help us in filling gaps of current signals related to human life on Earth based on social media. The bot rejection framework is based on using a spatial signal for supervising a machine learning model with extreme label noise still being able to reject some of the unwanted components of the social media stream. Furthermore, we comment that such models show significant biases and can, therefore, not be used responsibly without bias analysis and mitigation per application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.