Abstract

Redox cocatalysts play crucial roles in photosynthetic reactions, yet simultaneous loading of oxidative and reductive cocatalysts often leads to enhanced charge recombination that is detrimental to photosynthesis. This study introduces an approach to simultaneously load two redox cocatalysts, atomically dispersed cobalt for improving oxidation activity and anthraquinone for improving reduction selectivity, onto graphitic carbon nitride (C3N4) nanosheets for photocatalytic H2O2 production. Spatial separation of oxidative and reductive cocatalysts was achieved on a two-dimensional (2D) photocatalyst, by coordinating cobalt single atom above the void center of C3N4 and anchoring anthraquinone at the edges of C3N4 nanosheets. Such spatial separation, experimentally confirmed and computationally simulated, was found to be critical for enhancing surface charge separation and achieving efficient H2O2 production. This center/edge strategy for spatial separation of cocatalysts may be applied on other 2D photocatalysts that are increasingly studied in photosynthetic reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.