Abstract

Spatially separated loading of reductive and oxidative cocatalysts is a useful strategy for expediting charge separation and surface reaction kinetics, which are two key factors for determining the photocatalytic efficiency. However, loading the spatial separation of dual cocatalysts on a 2D photocatalyst is still a great challenge. Herein, decorating the spatial separation of oxidative and reductive cocatalysts on ZnIn2 S4 nanosheets is realized by designing a ternary Co9 S8 @ZnIn2 S4 @PdS (CS@ZIS@PS) hollow tubular core-shell structure. Particularly, Co9 S8 and PdS functionally serve as the reduction and oxidation cocatalysts, respectively. Experimental results confirm that the spatial separation of Co9 S8 and PdS cocatalysts not only efficiently improve charge separation and accelerate surface reduction-oxidation kinetics, but also generate a photothermal effect to further enhance charge transfer and surface reaction kinetics. As a result, the optimized CS@ZIS@PS yields a remarkable H2 evolution rate of 11407µmol g-1 h-1 , and the apparent quantum efficiency reaches 71.2% at 420nm, which is one of the highest values among ZnIn2 S4 so far. The synergistic effect of spatially separated dual cocatalysts and photothermal effect may be applied to other 2D materials for efficient solar energy conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.