Abstract
Label-free biosensing based on extraordinary optical transmission (EOT) through metallic nanoaperture arrays is a highly promising application of nanoplasmonics. The optical properties of these nanostructures, however, are complex due to the coupling between propagating and localized plasmon resonances, and some important features of the sensing mechanism have not been fully exploited. In this paper, in contrast to most previous studies that focused on the optimization of sensor response to bulk refractive index changes, we investigate the sensor response upon biomolecule bindings at different sensor positions inside or outside the nanoapertures. By properly tuning the geometric parameters of a gold nanoslit array, we show that the enhanced optical field in this EOT-based sensor can be spatially tailored to increase its interaction volume with the binding target biomolecules and improve the sensor performance. The results presented deepen the current understanding of the EOT-based sensor properties and open up new opportunities to further optimize their sensing performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Selected Topics in Quantum Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.